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THE METHOD OF LINES FOR NUMRICAL SOLUTION OF
PARTIAL DIFFERENTIAL EQUATIONS

ABSTRACT

In the method of lines for solving certain kinds of boundary value

problems in rectangular or trapezoidal regions one of the variables, say

y, is discretized while the other variable x is left continuous. When

suitable finite difference approximations are substituted for the partial

derivatives with respect to y the differential equation is changed into

a simultaneous system of ordinary differential equations in the variable

x. The method used very little in the USA is used e)oniiveLy in the

Soviet Union and nearly all the literature on this subject is in Russian.

The method has been tried in BRL and it seems to be a very useful one.

This report does not pretend to be a monograph on the subject. It

intends to be a practical guide to computations.
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ME PRINCIPLE OF THE NETHOD OF LInEf

We shall explain the method of lines for the following differential

equation of the second order in two variables which is to be integrated

in the rectangular region.

R; a xS ; y o  y yo +L

with boundary C.

Our boundary value problem is

au + bu +cu + du + eu +fu a gxy yy x ynR 1

u(x, yo) - q(x); u(x, yo + L) . ql(x) (2)
onC

u(a, y) = p0(y); u(P, y) - pl(y) (3)

where a, b, c, d, e, f, g are functions of x and y, and qi and p are

prescribed functions of x and y and all of these functions are continuous.

To solve the above boundary value problem by the method of lines we

shall use the following procedure:

Subdivide the interval L - Yn+l - Y. into n + 1 equal subintervals

of width h a L/(n + i), then draw n lines parallel to the x axis

y = Yk a yo + kh; k , 1, 2, *,., n.

which form the grid shown in Figure 1.

Yn+l

Yo

a 1
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We asstume that both the first and the second order partial derivatives

are continuous in x and y. Then we substitute in Equation (1)
Y" Myk; (k- 1, 2, .,.., n)

and replace the partial derivatives with respect to y by the central

differences

Uy(X, yk)- (2h)"i [Ukl(x) - Uk-l(X)]

uyy(x, Yk)" (h)2 [Uk+l(x) - 2Uk(x) + Uk-l(x)]

U, (x, k) (2h) 1 [Ui.(x) - qk.l(x)1

where

uk(x) ,U(x, Yk); U(x) = (d/dx)(U(xyk)), and Uk(x) is an

approximation of u(x, yk) on the line y w Yk"

When we perform these substitutions we obtain a system of n simul-

taneous differential equations of the second order which approximates

the system Equations l) and (2):

au, + (2h))bk(Ui1 - _.,) + h'ck(Ul - 2Uk k Uki) + dU• (d)

+ (2h) ek(Ukl - Uk-1) + fkuk a ; k a 1, 2, .,., n.

The boundary conditions become

Uo(x) . (x); Un1 (x) -= (x) (•)

uk(a) a ro(yk); Uk(A) a P(k). (6)

Nov Equations (5) are no longer considered to be boundary conditions.

They determine certain terms in the equation for k a 1 and for k a n
belonging to system (4). Ohe Equations (6) are the 2n boundary conditions
for the n second order differential Squations ().
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The simultaneous system of ordinary differential Equations (4) and

(5) together with the 2n boundary conditions equation (6) approximate the

boundary value problem Equations (I), (2), and (3). The general solution

of Equations (4) and (5) depends linearly on the 2n arbitrary constants

of integration which are determined from the 2n boundary conditions

Equation (6).

The convergence of the approximating system Equations (4), (5), (6)

to the original system Equations (1), (2) and (3) when h approaches zero

under certain restrictions on the coefficients and on the boundary
1*

conditons has been proven by various Soviet mathematicians

THE LAPLACE EQUATION

Consider the boundary value problem Equations (i), (2) and (3) when

the left member of Equation (1) is the Laplacian

U u +u - g(x) . (lA)
xx yy

In this case the approximating system of Equation (4) takes the form

U'f + h 2(Uk+1 - 2Uk + Uk.1) a gk; k l, 2, ., n. (4A)

The Equations (5A) and (6A) would be the same as Equations (5) and (6).

A HIGHER OREER OF APPROXDIATION FOR THE LAPLACE (OR POISSON) EQUATION

Thc order of approximation for the system Equations (4) or (4A) is

O(h2). For the Laplace equation we can derive an approximating system

of the order O(h 6). To obtain it we expand uk•1 and ik., in Taylor

Series about Yk' keeping the fourth order terms, and after eliminating

the fourth partial derivative u we get

(5/)Uj + (1/12)(U;;, + ujI..) + h -2 (Uk1 -2Uk + Uk.1)
O(B)

(5/6)gk + (1/12)(gk, 1 + 9k.1)

iAperseript nw~eve denote refewnioe uhioh mV be found opt ptV* SO.



ME CLOSED SOLUTION

For the Laplace equation and when the prescribed values of u on the

lines y = yo and y - yn- 1 are zero, we can obtain a simple closed solution

for each line.

Consider the boundary value problem Equations (1), (2), and (3),

when q . O, which is approximated by

U11 + h-(Ukl - 2 Uk +Uk.l) - 0; k - 1, 2, .,, (4A)

Uo(x).= Un.l¢•) - o, (A)

U(a, yk) - po(yk); U(, yk) - pl(y.); k = 1, 2, .,., n. (6A)

Applying the separation of variables we assume the following form

Uk(x) - q(k)v(x)

and substitute it into the above homogeneous equation. Ibis yields the

following equation:

q(k)v"(x) + h-2v(x)[q(k + 1) - 2q(k) + q(k - . 0

q(O) a q(n + 1) - 0

or

V"(x)/v(x) a + 1) - 2q(k) + q(k - - h2q(k) a 52 constant.

To find q we must solve the homogeneous difference equation

q(k -1) - [2 -h282]q(k) + q(k - 1) *0

vith the boundary conditions

q(0) - q(n + 1) 0-.

lbe general solution of this difference equation has the form

k k
q(k)m C1?1 +' C2X2

10



where C1 and C are arbitrary constants and X and X are the roots of
1 2 1 2

the characteristic equation

x2, [2-h28]%+ 1- 0.

From the boundary conditions we have

q(O) - C1 + C2 - O, hence C2 - - C1

q(k + 1) - C( 1 Xi1 - x2  ) - O, hence (X1/X2)nl+ -1

and

(x,/X2) exp (2ff is/(n + 1))

From the characteristic equation we have that

?IX - 1
1 x2

consequently

. "exp(W is/(n + l)) ;

'2" exp( - W is/(n + M))

. (y - yo)/h *, ,2 .. n

From the characteristic equation we have also that

Xz X 2 h 2 5 h28
1h 2

consequently

S•022 exp(, ±s/(n + 1)) + exp(- I is/(n + 1))= 2 coe(is/(n + 1))

2 2.2 2 -aos(m/(,{ + 1)) - $i. -(-(y -yo)/2L

q.(k) - c[Cxp(,ft isk/(, •)) - exp(- it isk/(n. +))] C Sit(,. - yo)/L).

11



Then taking

v"(x) - 82 V(X) 0 0

we obtain

vs(x) - Csexp(8 sz) + Dsexp(- 8sX)

Thus, we have a set of linearly independent solutions

Uk.,S(x) - ICSexp(b sx) + D 8exp(- 5 sx)] sin(1Ts(yk -yo)/L); s = 1 2, ... n.

and the general solution is

Uk(x) [C s [exp(B Sx) + D sexp(_- B a x)lsin (Trs (Yk.- yo)/L)
S=I.

where C5 and D are arbitrary constants.

In a similar way it can be shown that the solution of the homogeneous

syrtem corresponding to the higher order approximation for the Laplace

Equation '1B) is
n

Uk(X) = Z [Csexp(bsx) + Dsexp(- sX)]•zn(ns(Yk - Yo)/L)
s-l

where

5s2 24 sin2 (T/2L)(ys - yo)/h 2(5 + cos(Tr/L)(y. - yO))

and C' and D' are arbitrary constants.

S s

Raving the general solution of homogeneous system we may be able

in many concrete cases to find the particular integral corresponding to

the given right member, g(x, y).

For example if g is a constant or a function of y only, then

Au - g(y) (1)

and
(f"+* h'(uk~i " Uk ÷U U -1 g- g g( . (4A)

12



Assume that the particular integral on the k-th line is

Uk a Ak (a constant).

Substituting it in Equation (4A) we obtain the linear system of equations

A k+l -2+A A - h -2

from which the values of Ak are easily determined.

When g is a n-th degree polynomial in x, we can assume the solution

in the form of another n-th degree polynomial whose coefficients are

d,ttermined by substituting it in Equation (4A). Let for example

2gmo0 X + mx+m 2 •

Assume the solution to be

Uk •A 2+ kx+ Ck

Substituting it in Equation (4A) we obtain

22A k+ (A +l ~2A k +A k-l)x 2+ (B k+l -2B k+,B kl)x

k+- 2 Ck Ck. =mx + mlx + m2

Comparing coefficients of the same powers-of x we have

A k+l -
2A k + Ak -i m 0

Bk+l-2Bk + Bk, m

Ck~l : 2 Ck + Cki + 2Ak =-m2

from which the values of Ak, B k Ck can be determined.

13



NU!EUCAL EXAMPLE 1

Solve the following bowndary value, problem:
• .-- 1 1ntheregion •,whichis the rectangley l - ICI (€)

u )l 1 yA- 0 on the boundary C; (2)

u(x, U) u(x,- ).o. (3)

Applying the method of lines we shall-use the three lines
1 11. 3L=)

y 2  o; Y3 = T; (h v; = 3; L -)

We shall compute Uk(x) on these lines using the approximating syistem

of Equations (4A), which in our case is

Tf'(x) + 16•U 2 (x) - 2U(x)] = - 1; Uo(x) U4 (x) = 0.

Uf(x) + 6Cu 3 (x)- 2U2 (x)+ U1(x)] . - j (1a)

UIf(x) + 16[U2 (x) -2u3(x)] = - ,

with the boundary conditions

ui(- L)" U (1) 0 0; i = 1, 2, 3

3y
1/2

Y2

-1/ 1

Figure 2
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n1E PARTICULAR INTEGRALS

We shall assume that the particular integrals of our system are

the constants

Ui=Ai,

Substituting the above in the system Equation (la) we obtain

A, A 3 3/32; A2 1/8

THE GENERAL SOLUTIONS
1 1

Since the prescribed values of u on the lines y = - and y = 2are

zero we can use the closed solution. Adding the complementary functions

to the particular integrals we can write the general solutions on each

line as

Ul (x) sin • [Clexp(dlx) + Dlexp(-dlx)] + sin '_[C 2 exp(d 2x) + D2exp(-d 2x)

+ sin(3fr/4)[c 3exp(d 3x)- + D3exp(-d 3x)] + 3/32

(/F/2)(C exp(dix) + Dlexp(-dlx) + C exp(d 3X) + p3exp(-d 3 4c))

+ C2 exp(d 2 x) + D2 exp(-d 2 x) + 3/32 ;

U2 (x) - sin 1Tr[C1 exp(d 1x) + D1exp(-dlx)] - sinTnC 2 exp(d 2 x) + D2 exp(-d 2 x)]

+ sin(3ff/2)[eC3exp(d 3x) + D3e xp(-d 3 x)4 + 1/8

-C1 exp(d1x) + D1 eexp(.dlx) - C3 exp(d 3 x) - D3 exp(-d 3x) + 1/8

U3 (x) - sin(3rT/4)EC 1exp(djx) + Dlexp(-d 1x)3 + sin(3fr/2)IC2 exp(d 2x)

+ D2 exp(-d 2x)] + sin(9rr/4)[C3exp(d 3x) + D3exp(.d 3x)l + 3/32

- (f7/2)[C 1exp(d1x) + Dexp(mdlx)) - [C2exp(d2x) + D2exp(-d 2x)]

+ (1'/2)[.C3exp(dB3 X) + D3exp(-d 3x)] + 3/32

15
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where
2 2 2 2 2 2,

d 64sn*T/) 64 sin (-R/4.); d3  64 sin(3n,/8)

Sinceethe region R and the boundary conditions are sytmetrical with

respect to the y axis that is Uk(x) Uk(-x), we have

C1 =D,

and using the boundary conditions we obtain the system of algebraic

equations which determine Ci

(/Y cosh(dl/2))C1 + (2 cosh(d 2/2))C 2 + (/ý cosh(d 3/2))C 3 - - 3/32

(2 cosh(d 1/2))CI - (2 cosh(d 3/2))C -3 1/8

(VT ',osh(dl/2))C 1 - (2 cosh(d 2/2))C 2 + (/7 cosh(d 3/2))C 3  - 3/32

Hence

C1 = - ( +'2 4)sech(dl/2)/128; C3 = - - 4)sech(d3/2)/128; C2 - 0.

Thus finally

Ul (x) a /vC 1 cosh(dlx) + /2C3 cosh(d 3x) + 3/32

U2(x) = 2C1 cosh(dlx) - 2C3 cosh(d 3 x) + 1/8

U3 (x) - /TC1 cosh(dlx) + /2C3 cosh(d 3x) + 3/32

NUNERICAL EXAMPLE 2

Solve the boundary value problem

Au oin0 (1)

u(x, 0) a u(xs8) a 100 x (12 - x) (2)
on C

u(O, y) = u(12$, y) OO y (8 - y) (3)

R; 0 A x 12;, Oiy 8

16



y

y2=--I - 2-

S, X

Figure 3

Applying the method of lines we shall use the three lines

Yl= 2, y2 = 4, y3 = 6; (h = 2, n u 3, L - 8).

We shall compute Uk(x) on these lines using the approximating

system Equation (4B) which in our case is

(5/6)uj + (1/12)(uf1 + uj.1) + h'2(Uk+l - 2Uk + Uk.1) . 0 (4B)

U0(x) U4(x) - 100 x (12 - x) (5B)

Uk(o) - Uk(12). 100 yk(8 - yk); k a 1, 2, 3. (6B)

We shall rewrite the system combining Equations (4B) and (5B)

(5/6)' + (1/12)(u - 200) + (1/4)(U2 - 2U + loo x (12•- x)) . o
(5/6) , + (1/12)( , u+') i (1/4)(u3 -2U2 + 5) o (4B)

(5/6)U't + (1/12)(-200 + Ui#) + (1/4)(1oo x (12 - x) - 2U3 + U2 ) "0

a 2; 13(0) a 1920; U1(12) a 1200

Y . 4; U2(0) 1600; (12) 1600 (6B)

•3 -6; U3(0) 2oo; U3(12) - 12oo.

17



For digital computations the second order system must be reduced to

an initial value first order system. To achieve this let us set

U' .V (I)

2 l V 2 , (II)

Ut V3 ; (iii)

Substituting Equation (I), (II), .(III) in Equation (4B) we obtain

(5/6)v{ + (ll/2)(VL - 200) + (l/4)(u2 - 2U, + 100 x (12. x)) l 0 (Iv)

(516)vL + (¢ll2)(vi + vj) + (l/4)(u3 - 2U2 + U1) 0 Mv)

(5/6)Vj + (1/12)(-200 + VL) + (l/4)(lO0 x (12 - x) - 2U3 + U2 ) 0o (VI)

or

Vj + (1/1/o)v2 + (3/1o)U 2 - (6/10)11 a 20 - 30 x (12 - x) (Iv)

V+ + (l/lo)(vi + V{) + (3/1o)(u 3 - 2U2 + U1) 0 (v)

vi + (1/lo)v• - (6/10)u3 + (3/1031J 2 - 20 - 30 x (12 - x) (VM)

The Equations (I) through (VI) form the system of six first order

equations, two of them nonhomogeneous. The conditions Equation (6B),

however, are not all initial and we have to arrange for that. The

solution on any line k will be the linear combination of independent

solutions of the homogeneous sytem q plus the particular integral Ul

Uk(X) * c,€q(x) . UP(x) k . 1, 2, 3, (vII)

where C are constants to be determined from the boundary conditions.

The independent solutions of the homogeneous system Equations (I)

through (VI), where the right members in the Equations (IV) and (VI) are

replaced by zeros, are obtained frcs the folloving set of initial condi-

tions at x :O
18



TABLE I

INITIAL CONDITIONS, x = 0

Slymbols of the
mnd. Solutions UI(O) U2 (O) U3(0) VI(o) V2 (O) V (O)

V 1i000 0 st set the initial
ki 0 0 0 0 0 conditions

V2k e 2nd set the initial0 1 0 0 0 0 cniin
k k conditions

V3 U3  3rd set the initial
0k k conditions

44 4th set the initial
Vk Uk 0 0 0 0 conditions

V5  U5  0 0 0 0 1 0 5th set the initial
k k conditions

V6  6 6th set the initial
0ki conditiont

VP T? 0 0 0 0 0 0k k

"*
The particular integrals Up are obtained from the non-homogeneous

k
system Equations (I) through (VI) with initial conditions all zero (as

shown in the above table). The constants Ci are determined from the
linear system arising from substituting in Equation (VII) the boundary

conditions at x 0 and at x n 12

6
SCoU(o) U (o)- t(o)

L-1

CiUk (12) -U(12) * J(12); k lp1 2P,3

ho We ehaZ ein Tabte Z1 on mhe eiirZ. The fiet; tine at"0eeh
th init eanditio awe U,(O) A1.' V (0) - r,(0) -a V(0) - VI(o) -

V (0) a . TVe ot utio.w •r nf fa tes nitat £ tioL a'
V1 and U1

19



cuRviLzEAR BOUNPARIES

If the region of integration R is of a shape of a curvilinear

trapezoid shown in Figure 2 which is bounded by the lines

y a yo; and y -Yn+i

and by the curves

xac9(y) and x 0(y); yo0  y!Yni

then the procedure of the method of lines remains essentially the same

as for a rectangular region. The proof of convergence, however, requires

that the third partial derivative with respect to y be continuous. The

curvilinear boundaries will be explained in the following example.

EXAMPLE 3

Solve the boundary value problem

Au- 0 in R (1)

u(x0 o) = u(x, 4) a o (2)

on the curve a u ayl(x, y) n x + y (3)

on the curve f u a y2(x, y) a x -y

where R is c(y) % x . 0(y); 0% y 4

y 4 - 'Yk

a1 2

y1 - I....----
yo = 1 2 3 5 6 7 8

2O

A w

3m • • • ••• • • . i



Applying the method of lines we shall use the three lines

yl - 1; Y2 = 2; y 3 " 3(h =- , n 3, L- 4)

We shall compute Uk(x) on these lines using the approximating

system of Equations (4A) which in our case is

U"U• U - 2U +U 0 0; U = oa0;

3 2

On the curve a; 1 2

Uk1 (ce)x +yk= yk Yk +y l

On the curve 0; Uk(0L) e- y -y e3k

where xkl is the abscissa of the point of intersection of the l1ne y Yk

and the curve x - az(y), and xk is the abscissa of the poinr of inter-

section of the line Yk and the curve x - 0(y).

Like in the previous examples we obtain six independent solutions

from the assumed initial values shown in Table I and form the general

solutionc
6

U (x) UZc'u'(x)

Lai1

We determine the constants C from the linear system &rising from

•ulstltutine th.ý boundary conditions

UkX). C' i(X•); k 1p 2P 3.

21



MACHNE= COMPUTATION

In order to compare the method of lines with the conventional grid

method, Numerical Example 2 has been programmed using the two methods.

The programumling, with notation included, for the method of lines is

given. Figure 5 is a flow chart showing computer operations.

CONCLUSIONS

The method of lines and the conventional grid methods have been

compared on two high-speed digital computers at Ballistic Research

Laboratories, Computing Laboratory, Aberdeen Proving Ground, Maryland,

with respect to run time, computer limitations, and one known solution,

u(4, 4) = 2428. Let "H" be the step size and "N" be the number of points.

The comparisons follow:

First Method - Conventional Grid Method

A. H 2 N 15 15 x 15 Matrix

ORDVAC - Run Time 5 min.
No Limitations

BRLESC -R Time 1 min.
No Limitations

U(4, 4) - 2419.53919

B. Hl N 77 T7 x 77 Matrix

ORDVAC -Memory too small

BR1ESC -Run Time 1 min
No Limitations

u(4, 4) a 2420.694W

C. H .5 N a308 308 X30 Matri.x

Memory too small on both computers

22
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Sec.ond Method - Method of Lines

A. H 2 N 3 X = .1 6 x 6 Matrix

ORINAC - Run Time 5 min.
Limitations, smaller LaX' s consume too much

run time

BRJESC - Run Time 1 min.
No Limitations

u(4, 4) 2420.4529

B. H =1 N =7 AX = . 14 x 14 Matrix

ORDVAC - Run Time 10 min.
Limitations, same as A.

BRLESC - Run Time 1 min.
No Limitations

u(4, 4) 2420.7435

The method of lines needs approximately ten times less storage than

Lhe conventional finite difference methods. In some cases it may be

faster and more accurate. Another advantage of this method is its

applicability to analog computers.

TA'USZ LESER JOHN T. BARRISON
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FORAST PROGRAM

METHOD OF LINES

PROGRAMMER- J. T. HARRISON

COMM GIVEN-

COMM DEL U 0 IN R
COMM U(XO) = UIX,6) = iOOXI12-X)
COMM U(OY) - UiI29Y) 8 lOOY(8-Y)

COMM FIND U(XtY) IN REGION R

COMm NOTATION-

COMM H = STEP SIZE
COMM N 8 NUMBER OF LINES TO FIND (O<Y<8).
COMM L a LENGTH OF Y WO(-Y<-8).

COMM BI a UI1O) a 1200 0 84 a U1(12) a 1200
COMM 82 z U2O0 a 1600 9 85 a U2(12) a 1600
COMM B3 a U340) a 1200 9 B6 a U3412) a 1200

COMM y a X
COMM Yl a UKIX) , (1=19293) 9 (K01,293).
COMm YI a VK(X) a UIKiX),(I=4,5,6) , (K=192,3).
COMM YlI = D(UK)/OX , (1=012,3) , (K=B12,3).
COMM Y'I = D(VK)/DX 9 (1=495,•41 IK9l,293).

COMM M1,1 - 2N X 2N MATRIX TO FINE THE COS.
COMM CI - (l-lt2t...6) CONSTANTS TO BE DETERMINED.
COMM CUI - (Is1l2,...21) FINAL SOLUTIONS FOR UKIX).
COMm QI - (1=0,1,...6) ERROR TERMS FOR SUBROUTINE.
COMM UI - (i=t2t..230) TEMP. STORAGE.

25



BLOC(Y-Y6) Iy'-Y'6)1Q0-06) ISI-S6)2
BLOC(Ul-U230)1CUl-CU4S)(MLtl-M6,7)X
BLOC1CI-C6)Z
SYN (KaYIS

DELI DEC (.111
START INTIH=Z21 INT1Nm3) INT1L=S)t

PRINT-FORMATIF3)-< H a >(H)< N a>(N)
CONT< L a >(1)2

ENTER(PRINTS)l ENTER(PRINTB)l

Comm BOUNDARY CONDITIONS

81=12002 B2=160OX 83=12002
84=12002 85=16002 86m1200l

Comm INTERGRATE (0<=X<=12)v BY MEANS OF
Comm A SUBROUTINE. RUNGE-KUTTA GILL TO APPROXIMATE
Comm ORDINARY DIFF. EQS. FROM ? INITIAL CONDITIONS

EPS=DEIX*.Sg5
SET(TC=0)(1.0)2

1.0 READ-FORMATI Fl)-(?)NOS.AT(YO)2 INC(TC=TC*1 32
SET(C=O)X
UII.Y1X U29IaY2% U39l=Y3X
INCI 1=1#3)X
ENTER(ReK.G.)(DELX)(?)1EYAL'YIY) YIYI) Q32
COUNT120 IINIC)GOTO(R*K.G1)2 G0T014*0)X

Comm EVALUATE THE YIS.

EVALBY Y01sY42 Y12*Y5% Y*3nY6X
IF-INT1TC=?IGOTO12.0)3
HON = 0X GOTO( 3.0)2

2.0 HON a 20-30*XI12-X)2
3.0 AA=*6*Y1-o3oY2*HONS BBa-*3*(Y3-2*Y2#Y1)X

CCno6.Y3-. 30Y2*HONS
V. 1a199*AA-10*BB.CC)/982
Vl2.1100*BBIOO*CC-1O.AA)/98%
V0 3.1AA-1O.8B499*CCI/982
Y*4=Vllt Y*5aV922 Y'6nV'3X
GOTO(RoK*GO)2
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Comm STORE DATA.

4.0 UIIuYlt U2tl=Y2X U3,IaY3X
INC(Isl*I3)X
IF(X=12)WITHIN(EPSIGOTO(6.O)X
SET(C=.0 GOTO(R.K.GI)X

6.0 IF-INT(TC=7IGOTOEFINDC)X GOTO(1.O)X

Comm DETERMINE THE CIS FROM UK(O) AND UK(12).
COMM FORM A 2N X ZN MATRIX.

FINDC SET(IluO)(JJ=O)(TuO)(JsO)(KK=O):
7.0 Ml,1tIlzUl#JJX INC(JJ=JJ+21)( 1111.1)X

COUNTE63 INIT)GOTO(7.O)2
Mlt1,IlsBlKK-U1,JJX INC(KKuKK*1)IIluaII.)X
SETIT=OIX
COUNT(3)INIJ3GOTOIS.O3X GOTO(9*O)X

8.0 IF-INT(KK<=2)GOTO(8.k)X GOTO(8.2)X
8.1 SET(JJaO)X GOTO(8*3)X
8.2 SETIJJuI8)Z
8.3 INT(JJaJJ+J)X GOTO(7.O)X
9.0 IF-INT(KK=6)GOTO(10.O)X SETIJ=O)X GOTO48*0OI
10.0 ENTER(SoN.E.)IMl,1)I6)lCl)X

Comm FIND UK(X) -(K=192931 IN THE REGION R.

SET(K-O3( II-O)IJJ=OI( IuO)IP-126)
CLEAR(45)NOS.ATICUII3 SET(KKOII(CTaO)X
PRINT<>11>(YuZ>9>(Ym4>9>CY=6>%
ENTER(PRINTBIX

11.0 INTIKI=K4I3Z SETIII=0OZ
12.0 CUIPKIOC19II.UIJJ+CU19KIX

I NC IJJ*JJ4211
COUNT16IINE £I)GOTO(12.O)X
CU1,KInCU19KI+UltP% INC(P=P+1IZ
INTl JJal*KK)t
COUNT(3) IN(I KGOTOE zi.O~:
PRINT-FORMATIF2)-(Xn>ECT II3)NOS.ATICUtIKJ
SETI1=0O2 INCIKOK+3)lCT*CT.2)IKK*KK*312
IF-INTIK=21)GOTOIN*PROS)t ENTER(PRINTS)t GOTO1III.O)
GOTOI 11.01X

Fl FORNIIO-10)(I1-?)
F2 FORMI4-3)(3-2)(1-1)l12-4-10313-2)EI-33X
F3 FORMI4-3)(1-312

END GOTOISTARTIS
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METHOD OF LINES

INPUT

Y-X vi Y2 Y3 Y4 Y5 Y6

0. 1. 0. 0. 0. 0. 0.
0. 0. 1. 0. 0. 0. 0.
0. 0. 0. 1. 0. 0. 0.
0. 0. 0. 0. 1. 0. 0.
0. 0. 0. 0. 0. 1. 0.
0. 0. 0. 0. 0. 0. 1.
0. 0. 0. 0. 0. 0. 0.
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METHOD OF LINES

OUTPUT

H- 2 N- 3 L- 8

Ya2 Y=4 Ya6

Xz 1200.0000 1600.0000 1200.0000

Xm 2 1907.5268 1944.4311 1907.5268

XK 4 2581.9081 2420.4529 2581.9081

X= 6 2839.0200 2620.3148 2839.0200

XK a 2581.9081 242004529 2581e9081

Xv 10 1907.5268 1944.4311 1907.5268

XK 12 1200.0000 1600.0000 1200.0000
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